The addition of a third dimension alters the process of [[Vector|vector]] decomposition of an arbitrary [[Force|force]] slightly:
$F_x=F\cos\theta_x$
$F_y=F\cos\theta_y$
$F_z=F\cos\theta_z$
$F=\sqrt{F_x^2+F_y^2+F_z^2}$
$\vec{F}=F_x\hat{i}+F_y\hat{j}+F_z\hat{k}$
$\vec{F}=F(\cos\theta_x\hat{i}+\cos\theta_y\hat{j}+\cos\theta_z\hat{k})$
We can describe the vector component of the last equation with respect to the forces [[Unit Vector|unit vector]]:
$F(\cos\theta_x\hat{i}+\cos\theta_y\hat{j}+\cos\theta_z\hat{k})=F\hat{n}$