If we consider a [[Carnot Cycle|Carnot heat engine]] we find that the following relation is true:
$\oint\partial Q=Q_H−Q_L>0$
Because of the relation between $Q_H$, $Q_L$, $T_H$, and $T_L$ for [[Reversibility|reversible]] [[Cycle|cycles]], it is clear that:
$\oint \dfrac{\partial Q}{T}=\dfrac{Q_H}{T_H}−\dfrac{Q_L}{T_L}=0$
For an irreversible [[Heat Engine|heat engine]]:
$Q_{L,irr}>Q_{L,rev}$
As such:
$\dfrac{Q_H}{T_H}<\dfrac{Q_{L,irr}}{T_L}$
Therefore:
$\oint\dfrac{\partial Q}{T}=\dfrac{Q_H}{T_H}−\dfrac{Q_{L,irr}}{T_L}<0$
A similar proof exists for [[Refrigeration Cycle|refrigeration cycles]], therefore leading to the Inequality of Clausius:
$\oint\dfrac{\partial Q}{T}=0\to\text{reversible}$
$\oint\dfrac{\partial Q}{T}<0\to\text{irreversible}$
$\oint\dfrac{\partial Q}{T}>0\to\text{impossible}$